16 research outputs found

    Reporting carbon losses from tropical deforestation with Pan-tropical biomass maps

    Get PDF
    The ‘Reduction of Emissions from deforestation and forest degradation’ (REDD+) activities under the United Nations Framework Convention on Climate Change (UNFCCC) are expected to offer results-based payments to developing countries for reducing greenhouse gas (GHG) emissions from forested lands. It is necessary to determine reference data on forest Carbon losses against which future rates of change can be evaluated, and to have reliable methods for monitoring, reporting and verification of such changes. Advances in satellite remote sensing approaches and techniques for measuring purposes are therefore of tremendous interest. A robust example advancing such approaches, applied on the full tropical belt, is provided in the recent paper of Tyukavina et al (2015 Environ. Res. Lett. 10 074002).JRC.H.3-Forest Resources and Climat

    Increased influence of nitrogen limitation on CO<sub>2</sub> emissions from future land use and land use change

    Get PDF
    In the latest projections of future greenhouse gas emissions for the Intergovernmental Panel on Climate Change (IPCC), few Earth System Models included the effect of nitrogen limitation, a key process limiting forest regrowth. Few included forest management (wood harvest). We estimate the impacts of nitrogen limitation on the CO2 emissions from land use and land use change (LULUC), including wood harvest, for the period 1900–2100. We use a land surface model that includes a fully coupled carbon and nitrogen cycle and accounts for forest regrowth processes following agricultural abandonment and wood harvest. Future projections are based on the four Representation Concentration Pathways used in the IPCC Fifth Assessment Report, and we account for uncertainty in future climate for each scenario based on ensembles of climate model outputs. Results show that excluding nitrogen limitation will underestimate global LULUC emissions by 34–52 PgC (20–30%) during the 20th century (range across three different historical LULUC reconstructions) and by 128–187 PgC (90–150%) during the 21st century (range across the four IPCC scenarios). The full range for estimated LULUC emissions during the 21st century including climate model uncertainty is 91 to 227 PgC (with nitrogen limitation included). The underestimation increases with time because (1) projected annual wood harvest rates from forests summed over the 21st century are 380–1080% higher compared to those of the 20th century, resulting in more regrowing secondary forests; (2) nitrogen limitation reduces the CO2 fertilization effect on net primary production of regrowing secondary forests following wood harvest and agricultural abandonment; and (3) nitrogen limitation effect is aggravated by the gradual loss of soil nitrogen from LULUC disturbance. Our study implies that (1) nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs; (2) if LULUC emissions are larger than previously estimated in studies without nitrogen limitation, then meeting the same climate mitigation target would require an equivalent additional reduction of fossil fuel emissions; (3) the effectiveness of land-basedmitigation strategies will critically depend on the interactions between nutrient limitations and secondary forests resulting from LULUC; and (4) it is important for terrestrial biosphere models to consider nitrogen constraint in estimates of the strength of future land carbon uptake.NASA (NNX14AD94G)U.S. National Science Foundation (NSF-AGS- 12-43071)U.S. Department of Energy (DOE-DE-SC0006706)Ope

    The Role of CO<sub>2</sub> and Dynamic Vegetation on the Impact of Temperate Land-Use Change in the HadCM3 Coupled Climate Model

    Get PDF
    Human induced land-use change (LUC) alters the biogeophysical characteristics of the land surface influencing the surface energy balance. The level of atmospheric CO2 is expected to increase in the coming century and beyond, modifying temperature and precipitation patterns and altering the distribution and physiology of natural vegetation. It is important to constrain how CO2-induced climate and vegetation change may influence the regional extent to which LUC alters climate. This sensitivity study uses the HadCM3 coupled climate model under a range of equilibrium forcings to show that the impact of LUC declines under increasing atmospheric CO2, specifically in temperate and boreal regions. A surface energy balance analysis is used to diagnose how these changes occur. In Northern Hemisphere winter this pattern is attributed in part to the decline in winter snow cover and in the summer due to a reduction in latent cooling with higher levels of CO2. The CO2-induced change in natural vegetation distribution is also shown to play a significant role. Simulations run at elevated CO2 yet present day vegetation show a significantly increased sensitivity to LUC, driven in part by an increase in latent cooling. This study shows that modelling the impact of LUC needs to accurately simulate CO2 driven changes in precipitation and snowfall, and incorporate accurate, dynamic vegetation distribution

    Carbon and Other Biogeochemical Cycles

    Get PDF

    Global change pressures on soils from land use and management

    Get PDF
    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development
    corecore